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THE CONDITION FOR LOW STRESSES IN A 
P][ECEWISE HOMOGENEOUS WEDGE OF 

NON-LINEARLY ELASTIC MATERIALSt 

M. A.  Z A D O Y A N  

Yerevan 

( R e c e i v e d  12 M a y  1999) 

The low-stress regions, 1:o the points of which zero stressed states at the edges of the contact surfaces correspond, are constructed 
in the  space of physical and geometrical parameters  of a piecewise homogeneous wedge of non-linear elastic materials. When 
these parameters are specified, one can judge the strength of the joint from these zones. If the values of only some of the parameters 
are known, the remaining parameters  when the edges are being designed can be chosen so that the conditions for low stresses 
are satisfied. In particular, a three-dimensional low-stress region is constructed when the wedge is made of three materials which 
are s trengthened in accordance with a power law. © 2000 Elsevier Science Ltd. All rights reserved. 

The case of linearly elastic wedges made of two materials was considered in [1], and for materials with 
power-law strengthening in [2, 3]. 

1. THE GENERAL CASE 

We will investigate the stressed state for an arbitrary shear in the neighbourhood of a corner point of 
a piecewise homogeneous solid, made of n wedge-shaped prisms, the materials of which are strengthened 
in accordance with the power law 

= keg' 

where or0 and e0 are the stress and strain intensities, the parameter  m is assumed to be the same for all 
the materials, while the strain modulus k is assumed to be different. The angles at the vertices of the 
wedge component,; will be denoted by ai, while the strain moduli of the materials will be denoted by 
ki, respectively, where i = 1, 2 ,  . . . ,  n (Fig. 1). Quantities in the rangesAi_l ~< 0 <~hi,  whereAi = ai 
+ a2 + -.. + ai, A0 = 0, will be given the subscripts i. 

The stresses and displacements in these ranges will be sought in the form 

= 2~k () . - ' ) ' "  f -  = k, r O ' - ' ) m f i k ,  T, : i  i .l i )~i ,  "[ r.-.i " " " 

~" i = I ,  2 . . . . .  n W i = r f i ,  Zi  = ( ] / 2 +  ~2f /2)(  .... 1)12, 
(1.1) 

The system of functionsj~ = ft(0, h) defines the eigenfunction, while h is the eigenvalue of the problem 
in question. Substituting the stress components from (1.1) into the third equilibrium equation, we arrive 
at a second-order ordinary differential equation iffi 

(f,~ci)' + qf~;Cl = O, rl = L[1 + (Z. - l)m] (1.2) 

For boundary conditions of the first kind we have 

f((O) = .f,,~( A,, ) = 0 (1.3) 

On the contact surfaces 

fi  = fi+l, f i k i  = 6ifi'+lZi+J when 0 = Ai (1.4) 

~ ) i = k i + l ] k i  , i = 1 , 2  . . . . .  n - I  
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Fig. 1 

Introducing the new function ¢(0, h) 

.t;," = f~v, (1.5) 

from (1.2) we obtain a first-order differential equation 

¥~= (V~ +£2)(V~+(o2)  , I (1.6) 
v~+~?p  ; o~-=z. (~ .+p- i ) .  P=.-S 

The conditions on the contact surfaces, by (1.3), will be 

~i(~i" + -- 6 i V i ( V ?  + = 0, 

~1. i = ~ l i ( A  i, ~,), V i = Ig i+ l (A  i, ~,) 

i = 1, 2 . . . . .  n -  I (1.7) 

We will assume that the displacement changes sign inside the range of one of the intermediate wedges 
(i = j). The boundary conditions for Eq.(1.6) will then be 

~j(0)  = ~,,(A,,) = 0  (1.8) 

We will represent the general solution of Eq.(1.6) in the following form 

F(Wi)=Hi-O, i ¢ j ;  i=1 ,2  ..... n: j ~ l ,  j ¢ n  

F(Wi~)= Hi - 0  when Ai_ I <0<~/ 

F(t~j 2 ) = ~ - 0 when ~i < 0 <__ Ai 

arctg--, ~ j = H j +  A, A = ~  I+ F(x) = arctg~-+ ¢o ¢o 

(1.9) 

Here Hi and Hj are arbitrary constants, and we have also used passages to the limit from the right 
and left to the point 0 = ~. Introducing the new unknown constants ~p = Hi - Zi-l ,  where ~1 = 0, 
• n = an, we obtain 

F ( k t i ) = q ) i - O ~  i, i = 1 , 2  . . . . .  n - I ;  i ~ j  (1.10) 

F(lai)=tpi-o~.i+A, F(vi)=(pi+l, i=1 ,2  . . . . .  n - I  (1.11) 

Using the last equation and eliminating ~i in the first equation of (1.10) and (1.11), we arrive at the 
following system 
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F(I.t, ) = -(x I 

Ffvi-I ) -  F(lJ'i) = ~i, i ;~ j.  i = 1, 2 .....  n -  I (1.12) 

F(v.i_l)-F(I.t.i)=ot., - A ,  F(v,,_j)=~,:  

Equations (1.12), together with (1.7), constitute a system of 2n - 1 equations with 2n - 1 unknown 
constants IX1, ~2, - . . ,  IX,-1; vl, v2 . . . . .  v,_~; h which enable one, in principle, for specified values of the 
parameters, to determine the eigenvalue 

~.=X((xt,c~ 2 ..... ct,; ;Sj,~ 2 ..... 6,,_1; m) 

If the point ~j lie.~ inside the range of the n-th wedge, i e j = n, then, taking I~. = IX, = 0 in the first i • , : ]  

equation of (1.11) we determine q~, --- or, - A. The first two equations of system (1.12) remain unchanged, 
the last equation is removed, and the penultimate equation takes the form 

F(V,,_ I ) = 0~,: - A 

In the last three equations of (1.9) we must take ~ = q0, + A,_]. 
Determination of the function.~, We introduce the following notation 

% (xl, .r2) = S ~ ( /0  
t "  I 

Integrating Eqs 111.5) and using the conditions for the function~ on the contact surfaces, we obtain 

./;=J'i '0)expl't '~(0, Ai)-t-tlJ2(Ai, A2)+...+Wi(Ai_I, O)], I < i < j - I  

f/=.fl, fA,)exp{-Wi(O, Ai)-IPi+l(Ai , Ai+l)-...-°E,,(A,,_ t, A,)], j + l < i < n  (1.13) 

For thej- th wedge we will have 

.fit =fl(0)cxpl~Pi( 0, Aw)+ 'P2(AI, A2)"l'...+ Wit(Ai-i, O)], ANt <O<~j 

.~2 =f,,(An)exp[-Wi2( 0, Aj)-~'F.i+t(A.i, Ai+I)-...-W,:(A,_ I, A,)], ~j<O<Aj  (1.14) 

If the point ~j lie,; in one of the outermost wedges, for example, in the n-th wedge, the first equations 
in (1.13) and (1.14) are retained; whenj  = n the second equation of (1.13) loses its meaning, and instead 
of the second equation of (1.14) we will have 

.f,,2 = ./';,2 fA,, ) expl-W, 2 (0. A,, )1 (1.15) 

Hence, the system of functions j~ is determined, apart from two unknown constants f1(0) andfn(An). 
One of these can be eliminated by using the obvious matching conditionf/](~-) = j~'2(~j). To obtain these 
derivatives, Eq. (1.2) is integrated term by term with respect to 0 with i = j, initially from Aj-1 with 
respect to ~j and then from ~j with respect to Aj Further, representing the expressions for.~l and ~2 -. • . . /  J 

from (1.14) m the form of the product of a constant and an exponential function, and then substituting 
them into the above matching condition, we obtain 

f,,(A,,)=-fl(O)expIWl(O. AI)-I-W2(A I, A2)+...+~Pi_I(A.j_ 2, Aj_t)+ 
(1.16) 

+tlJi+l(A i, Aj.,i)+ ~t~.j+2(mi+ I, Ai+2 )+... + tl~,(A,_l, An)](Tjl/Tj2)P 

where 

~j 
T.i I =-(~/iN.il)Ai_, +1] J N j I exp[mWji(Aj_ j, O)]dO 

Ai-i 

Aj 
T)2 =: (~j2Nj-,)Ai + rl J Ni2 exp[-mWj2(O, Aj)]dO, Nj~ = (V~i + X2)("- ' ) '2 
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W h e n j  = n ,  instead of  (1.16) we will have 

JJ ,2(A, ,)=-f](0)exp[Wl(0,  AI)+W2(AI, A2)+...+~P,,_I(A,,_2, A,,_j)I 

A uniform wedge. If  the componen t  wedges are made  of  the same material ,  i.e. ~i = 1, we take 
~i = vi in Eqs  (1.7). F rom (1.10) and (1.11) we have the relat ion 

(pi+l=tPi-o~i, i c j ,  i = 1 , 2  . . . . .  n - 1  (1.17) 

(pj.~ = (pj - o~j + A (1.18) 

F rom (1.13), by specifying the values i = 1, 2 , . . .  j - 1 in succession, we obtain q~j = - A , - 1 .  Further ,  
t a k i n g i = n - l , n - 2  . . . .  j +  . . . .  * " 1 m successlon, f rom (1.17) we obtain ~j+l = An - h i .  Substituting these 
expressions into (1.18) and introducing the nota t ion  An = 2"trs, we obtain h - 1 = (1-2s)to. For  a 
semi-infinite slit, i.e. for  s = 1, we have h - 1 = - p / ( p + l ) .  This result  was first obta ined  for  plane 
deformat ion  by o ther  methods  in [4, 5]. In the case considered,  for  an arbitrary angle, we obtain 
(Fig. 2) 

2 + ( p -  I)(I - 2s) 2 + (I - 2s)4( p -  l)2(I - 2s) 2 + 4p  X (1.19) 
8s(l - s) 

The  formula  obta ined  can also be used in the case of  c lamped edges by replacing s by s/2, and in the 
case of  mixed conditions, by replacing s here  by 2s [9]. 

Note  that  singular stresses at singular points of  linearly elastic plane and three-dimensional  solids 
were  investigated in [6-8]. 

The  hypersurface  of  finite stresses. Assuming h = 1 in (1.10) - (1.13), defining 

~ i = t g ( ( p i - ~ i ) ,  vi = tgtpi+l, i = 1 , 2  . . . . .  n - I  

and substituting these expressions into Eq. (1.7), we arrive at a system of  n - 1 equat ions 

tg(~ i - tpi )1 cos(t~i - tpi ) i I-'" +~i tgtPi+l [ c°s(Pi+l [I-m= 0 (1.20) 

containing n - 2 unknown constants @2, ~o3 . . . .  , %-1. Af ter  eliminating these parameters ,  we arrive, 
in principle,  at the equat ion  of  hypersurface of  finite stresses in the 2n space of  the parameters  
0"1, Or2, " " ,  a n ,  BI, iB2, " ' ' ,  ~n-1; m. 

P 

0 

-~0 

I0 

0.5 • i 

Fig. 2 
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Linear ly  elastic ~aaaterials. Taking m = i in (1.9), we obtain  

~i=Ltg~.(Hi-O), i = 1 , 2  . . . . .  n - !  

Fur ther ,  defining 
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la i = Z, tg~.(% - ~ i ) ,  v i = ~tg~.~0i+ u 

and  substi tut ing these  expressions into Eq. (1.7) with m = 1, we obtain  

tg ~'(~i -- ~0i ) + ~i tg ~0i+ ~ = 0, i = 1, 2 . . . . .  n - I (1.21) 

This  is a system of  n - 1 t ranscendenta l  equat ions  with n - 1 unknown constants  q~2, tP3, - . . ,  q~n-1, h. 
Af t e r  e l iminat ing the p a r a m e t e r s  q~i we obtain  an equat ion  in h = h(Otl, o~ 2 . . . . .  OCn; 81, 82 . . . . .  8n_l). 

2. T H E  C A S E  n = 2 

We in t roduce  the no ta t ion  a l  = a ,  or2, = 13. In  this case, assuming n = j = 2, we obta in  f rom (1.9) 

F ( ~ , )  = - 0 ,  0 < 0 < t x  

F ( ~ 2 )  = oc+13- A - 0 ,  oc_<0_<~ 

F(~1/22) = OC + I~ - 0,  ~ < e - < ~ + ~ ,   =a+13-n/zA 
(2.1) 

Fur ther ,  f rom (1.10) and (1.11), taking ~2 = 0 and put t ing ~1 = ~ and vl = v, we obtain the equat ions  

F(la) = -ec, F(v)  = [~ - A (2.2) 

which, toge ther  with the equat ion  

la(la2 + ~2 )(,,,-u)/z _ 8v(v 2 + 7~2 )(,,,-n/2 = 0 (2.3) 

c o m p r i s e  a system of  equat ions  which define the e igenvalue h -- h (a ,  [3, 8, m) .  In  ec[3h space it defines 
a family of  surfaces  which depend  on the p a r a m e t e r s  8 and m. This surface is r ep resen ted  in Fig. 3 for  
8 = 2 a n d p  = 3. 

In  t he l imi t i ng  case when  ~ ---) a ,  i.e. when  ~ ---) -0% v --) -0% it follows f rom (2.2) and (2.3) that  

j ¢ z  

Fig. 3 
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~=I~= t + 4;~(X+p_ 0 

This means that in this case the piecewise homogeneous wedge behaves as a uniform solid. When 
c( = ~s, Eq. (2.4) reduces to (1.19). 

For a linearly elastic material (m = 1) it follows from system of equations (2.2) - (2.4) that 

X = rt/(2o0 when oc = [3 

q)(~.; c(, [3)= tgXo~+ftg~,[3=0 when o~;~[3 (2.5) 

For specified values of B we will consider k in (2.5) as an implicit function of ot and 13. Further, we 
have 

dK=k~d~+k~d~ 

where the primes denote partial derivatives. When et = 13 we have X~ = h' o = -'rr/(2o~ 2) < 0, and when 
ot ;~ 13 we obtain from (2.5) 

Z,6 

~ = - ~ , i / ~ 0 £  = ! cos  2 x ~  < 0,  x ;  - ~ 0 ; / ~ ; ~  1cos  2 xl~ < 0, 

a a[3 
/ =  "~ 

cos 2 Xa cos 2 ~.[3 

This implies that dh < 0, i.e. when o~ increases, when 13 = const, or when 13 increases, when o( = const, 
or when a and 13 increase simultaneously, k decreases monotonically. 

Taking k = 1, from (2.2) and (2.3) we arrive at the equation of the hypersurface of finite 
stresses [2] 

tg(x I cos(~ I R-''' +Stg131 cos[311-"= 0 (2.6) 

This surface is a trace in the a13 coordinate plane (Fig. 4). This is family of limiting curves of finite 
stresses separating the low-stress zones from the zones of intense stress concentration. 

Taking n = j = 2, we obtain from the first equations of (1.13) and (1.14), and also from (1.15) 

/ 

=/e 
/ ' / = 1  ~ 

20 
" S  

Fig. 4 Fig. 5 
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]i =Qexp~Pl( 0, 0), fzl =Qexp[tPl( 0, a)+tP21( a,  0)] 

f22 = - Q e x p I ~ P I (  0, Ot)--~lt22(0' (~+~)](T21/T22)1'' Q=fm (0) 

The expression for f22 refines the corresponding formula in [2, 9]. 
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3. T H E  C A S E  n = 3 

We will introduce 1:he notation 51 = a, o~: = 13, 53 = ~/(Fig. 5). We will assume that the displacement 
changes sign in the range corresponding to the central wedge, i.e.j = 2. Putting go2 = go, we obtain from 
Eqs (1.10) and (1.11) 

F(lal) = - a ,  F(vl) = q) 
(3.1) 

F(~t2) = ~0- ~+ A, FCv2) = Y 

These equation, together with the equations 

P.i(l-t~ +~2)(.,-I)t2 -5ivi(v~ +~2)(.,-I)/2 =0, i=  !. 2 (3.2) 

which follow from (1.7), constitute a system of six equations in the unknown constants ~1, P~2, vl, v2, 
go, h,which define the eigenvalue 

~. = ~.(a,  15, 7, 51 ,52 ,  m) 

For a uniform wedge, taking 81 = 82 = 1 and ~i  = vi, f r o m  (3 .1)  and (3 .2)  we obtain the equation 

a + D + y = A  

which also leads to formula (1.19). 
The hypersurface of finite stresses. When h = 1, finding ~z i and vi from (3.1) and substituting into 

(3.2), while taking i = 1 and i = 2 from (1.20), we arrive at the following equations 

tga [  cosa  1!-,, +51 tgtp I cos~0 II-m= 0 

tg(13 - ~p) I cos(~ - ¢p) I j -"  + 52 tg 7 [ cos y I ' - "  = 0 

(3.3) 

which contain the ~anknown parameter, go. In al3~/three-dimensional coordinate space this system of 
equations, for specified values of the parameters 81, 82 and m, defines the limiting surface of finite stresses 
(Fig. 6). This surface cuts off, from the coordinate axes, sections equal to qr, and leaves traces on the 
coordinate planes. 

.If 

7' 

i 

k 

Fig. 6 
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The limiting surface (3.3) separates a three-dimensional low-stress region (below the surface) from 
the region of intense stress concentration (above the surface). In other words, the low-stress region for 
the edge of the contact surfaces of the composite wedge in question will be a three-dimensional region, 
bounded by surface (3.3) and the coordinate planes containing the origin of coordinates. 

We can determine the traces of the limiting surface on the coordinate planes. Assuming ~/= 0, from 
the second equation of (3.3) we obtain ~ = 13 + ~rq, where q is an integer. Substituting the value of ~0 
into the first equation, we obtain 

tg ct I cos ct I l- "' + 8 t tg 131 cos ~ I ~ - "  = 0 

This equation defines a family of limiting curves - the traces of surface (3.3) in the a13 plane. Assuming 
13 = 0 in (3.3) and eliminating the expressions tg q~ [cos q~ ] l-m, we arrive at the equation 

tga  I cosa  I j - "  +8182 tg7 1 cosy I ' - ' " =  0 

which defines the traces of the surface (3.3) in the ot~ plane, Further, assuming ot = 0, from the first 
equation of (3.3) we obtain ~o = "trq. Then, the second equation is converted to the form 

tgl31 cos[3 I'-"' +82 tgT I cosy I ~-m= 0 

it represents the traces of the limiting surface in the 13~ plane. 
For a uniform wedge, i.e. when 81 = 82 = 1, system of equations (3.3) is satisfied if we put et = --~ 

+ "rrql and 13 - ~ = -~ /+  ~rq2, where ql are integers. Eliminating qo, we arrive at the equation of the 
plane 

+ 13 + T = rt (3.4) 

equally inclined to the coordinate axes and cutting out from the latter sections equal to ~. When the 
plane (3.4) intersects the hypersurface (3.3), three-dimensional regions are separated, to the points of 
which there correspond low-stress states if the common aperture angle of the wedge ot + 13 + ~ < ~r, 
and also regions to the points of which there correspond intense stress concentrations, if 
et + 13 + ~/> 7r. 

The traces of the surface (3.3) in planes parallel to the coordinate planes are also characteristic limiting 
curves. Thus, assuming ~/ = rr/2, we conclude from the second equation of (3.3) that 13 - q~ = --~r/2. 
Further, noting that ot and 13 vary in the square 0 < ~, 13 ~< "rr/2, we obtain from the first equation 

sin tx sin"' ~ -81 cos~ cos" tx = 0 

This equation defines the limiting curves in the ~ = "rr/2 plane. When 81 = 1 the limiting line becomes 
the straight line o~ + 13 = "rr/2. For rn = 1, this is obvious, and for rn < 1 it is confirmed by a check. 

Assuming o~ = "tr/2 in the first equation of (3.3), we determine qo --- - ~r/2. Taking into account the 
fact that 0 ~< 13, ~ ~< 7//2, we obtain the equation 

cos 13 cos"' y - 8 2  sin 7sin" 13 = 0 

which defines the traces of the limiting surface in the a = ~r/2 plane. When a2 = 1, this limiting line 
becomes the straight line 13 + ~/= -rr/2. 

Finally, assuming 13 = "rr/2 in the second equation of (3.3), taking into account the fact that 
0 ~< a, ~/<~ "rr/2, and eliminating tg qo. we have 

82 s ina  sin K ]1;"-"" 
sin 2cp = -2% .... ~" = ~ cos" tx cos"' Y 

Further, evaluating tg ~ I cos qo I l-m, from the first equation of system (3.3) we obtain, after reduction, 
the equation 

r-'-'~'~( I -m 2 )/(2m ) 

Sin o~sinlt'" y - cosycos"  a ~ +  =0  
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which defines the traces of the surface (3.3) in the 13 = ~/2 plane. When m = i it is simplified considerably 
and becomes 

sin etsin 7 - (Su / 52)cos ~ COS)' = 0 

When 81 = 82 the limiting line considered becomes the straight line et + 13 = ~r/2. Analysing the graphs 
it is found that a + 13 > ~r/2 when 81 > 82 and ot + ~/< ~r/2 when 81 < 82. 

Determination of the function fi. Taking n = 3 an d j  = 2, we obtain from Eqs (1.13) and (1.14) 

fv = Qexp~v(0,0) ,  f21 = Qexp[~l (0, (x) + ~P21((x, 0)] 

fT. V' 
f22 =-Qexp[hU,( 0, (X)-'t'22(0, (x + I~)]/~--~J 

f~ = -Qexp[' i ' ,  (0. a ) +  q'3(ct +18, 0)ff T2'] ' 
LT22) 

Linearly elastic materials. Taking m = 1 and i = 1, 2, we obtain from (3.1) and (3.2) 

tg).ct+5] tg).(p=0, tg).(13-(,0)+52 t g ) . y = 0  

Further, eliminating tg hqo from this system, we arrive at the following transcendental equation 

tg ).or + 5 n tg).[~ + 5182 tg).7 - 52 tg).(~ tg ).13 tg ).7 = 0 (3.5) 

which determines ~. for specified values of the parameters a, 13, y, 81, 82. 
If  one of the angles of the component  wedges is equal to zero or one of the parameters 8i is equal 

to unity, a wedge of three different materials reduces to a wedge of two different materials, for which 
it is known [1] that ~, does not have complex values. In the case considered it is necessary to investigate 
the complex roots of Eq. (3.5). 

For the same angles of the component wedges, i.e. when ot = 13 = y, Eq. (3.5) reduces to the form 

tg ).Ot(I + 5, + 5,52 - 52 tg 2 ).00 = 0 

It can be shown that the least positive value of h will be 

£ = OC t arctg[(I +51 +i~152)152] ½ (3.6) 

Here,  finally, we have the condition 3a ~< 2"rr. For identical materials, i.e. when 81, = 82 = 1, we have  
X = ~ / ( ~ ) .  

In the case of a semi-infinite slit (a = 2~r/3), when the material of the central wedge is very rigid 
(81 --+ oo), from (3.6)we obtain X = 3/4. 

The condition h =: 1 ensures a finite stress state at the edge of the contact surfaces considered. From 
(3.6) we obtain the limiting value 

c¢, = arctg[(I +5  u +5152]/52] "~ 

When 81 --+ ~o we obtain (x. = at/2. 
The limiting values of ~. For a wedge of three different materials, whenj  = 2 it follows from the first 

equation of (1.12) that ~ = a + tp + A/2, where we have dropped the subscript 2 on ~. When ~ ~ et, 
i.e. when I*1 --+ -0% vl --+ -oo from (3.1) we find ot = A/2, and we obtain the system of  equations 

F(l.t2) = - ~  + A / 2 ,  F(V2) : 7 

ILl2(~ ~ +).2)(m-I)/2 _52V2(V2 +).2)(m-I)/2 = 0  
(3.7) 

This means that fiar given a, 13 and y for the first wedge (or) the value of k is given by the formula 
for a uniform wedge (1.19), where s = ot/~r, while the second and third wedges are deformed together 
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as a piecewise homogeneous wedge of two different materials with corresponding values of h = (13, % 
~2, m) to be found from system of equations (3.7). 

When ~ ---> a + 13, i.e. when Ix2 ~ oo, v2 ~ 0% we arrive at a similar conclusion from system of equations 
(3.1) and (3.2): the third wedge (~/) operates as a uniform wedge while the first and second together 
act as a piecewise homogeneous wedge of two different materials. An analysis of the equations and 
formulae obtained shows that the low-stress regions do not depend on which constituent wedge the 
point lies inside (see also [9]). 

Note that these investigations can also be carried out without assuming that the displacement is of 
alternating sign. 

I wish to thank S. M. Sarkisyan and K. S. Tadevosyan for their help with the numerical and graphical 
work. 
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